少一尾的九尾猫提示您:看后求收藏(吾看中文5kzw.net),接着再看更方便。
就是后面他没有留意和标记出来的地方,哪怕是仅仅是只能提升一丁点的性能,也对其进行了处理和整改。
......
检测完相关的数据,徐川满意的点了点头。
“从数据来看,优化工作做得相当不错。将优化后的模型整理一份给我,我这边去找台超算验证一下。”
不得不说,人多就是力量大。
这些东西如果全由他一个人来说,没有个大半年的时间根本就做不完。这还是建立在他对模型相当熟悉的基础上。
.......
带着模型,徐川和彭鸿禧离开了七楼。
走在路上,彭鸿禧开口问道:“你这个模型目前来说应该还只是一个唯像模型吧?你准备怎么解决可控核聚变反应堆腔室中的超高温等离子体精确探测难题?”
“如果做不到对这些等离子体的数据精准探测,恐怕你这个模型也没法用于反应堆上。”
对可控核聚变反应堆内超高温等离子体湍流的探测,是目前可控核聚变技术中的一大难题。
严格来说,它其实只是控制聚变反应堆腔室内‘超高温高压等离子体湍流’难题的一部分。
在可控核聚变研究的这条道路上,对可控核聚变反应堆中的等离子体湍流进行控制是至关重要的一步。
但这并不仅仅只是一个问题,它是一系列的问题。
像外部的超导线圈产生强磁场控制,像建立数学模型对等离子体湍流进行调整,像第一壁外圈的冷却系统等一系列问题其实都是包括在内的。
只不过目前来说,无论是惯性约束还是磁约束,或者托卡马克和彷星器,没有一条路径能够解决这个问题的。
听到这个问题,徐川笑了笑,道:“这个问题要说复杂也复杂,但要说难,或许也算不上很难。”
闻言,彭鸿禧有些好奇的问道:“你准备怎么解决?”
目前来说,对反应堆腔室内的等离子体湍流测量常见的有两种。
第一种方法是测量等离子体自身发射的电磁波,来获得有关等离子体参量等信息的。第二种则是探针测量,通过将实体探针放入等离子体中以获得所需参量,是等离子体诊断的基本手段之一。
这两种方法是目前最常用的两种,但它们都有着各自的缺陷。
第一种方法的缺陷在于离子体发射电磁波的频谱很宽,包含的信息相当杂乱,建立的唯像模型只能在有限范围内准确。
第二种探针法虽然可以得到有关等离子体内部细致结构的信息和各种参量的分布情况,但缺点是会干扰被测等离子体。