晨星LL提示您:看后求收藏(吾看中文5kzw.net),接着再看更方便。
记者:“那么关于群构法,请问您最看好它被用来解决哪一个问题?或者说,研究哪一个领域的命题?”
陆舟笑着说:“真的要我说吗?其实我觉得就算我不说,我的同行们大概也能看出来吧。”
记者抿嘴笑了笑:“您还是说一下吧,照顾下我们这些外行。”
陆舟想了想,简短地回答道:“华林问题。”
在诸多加性数论问题中,华林问题可以说是其中的经典命题之一。
这一命题最早源于1770年华林发表的《代数沉思录》,在著作中爱德华·华林本人猜想,对于每个非1的正整数k,皆存在正整数g(k),使得每个正整数都可以表示为至多g(k)个k次方数之和。
作为加性数论中的经典问题,从事这一问题研究的人不在少数。
其中g(k)的存在性已经被希尔伯特用复杂的方法证明,g(2)=4的情形就是四平方和定理,早在由十八世纪拉格朗日证明。
在后来研究者中,韦伊费列治、巴拉苏布拉玛尼安、陈景润分别证明了g(3)、g(4)、g(5)的情况。
如果要问陆舟最看好被用于解决哪一个问题,那么毫无疑问是华林问题。